Technology

Xintela’s operations are based on a patented technology platform, XINMARK®, from which the company makes use of specific markers to develop new treatments and diagnostics in regenerative medicine and cancer.

XINMARK®

XINMARK® is the key in Xintela’s operations and is the company’s patented marker technology. Xintela’s markers are specific proteins which work as ”recognition flags” on the surface of certain cells. The markers make it possible to identify and select certain types of stem cells which can develop inte cartilage cells. Thus, Xintela can provide an unique way of ensuring the quality of stem cells to be used in repairing damaged cartilage.

XINMARK®-technology also provides a means to detect certain tumour cells and to target treatment to the cells in order to slow tumour growth. Xintela is focussing on the treatment of the aggressive brain tumour glioblastoma. The technology can potentially be used in other indications in the future.

top

XACT™

Xintela is developing an analytical test, XACT™ (Xintela Assay for Cell Therapy), which is based on specific antibodies which bind to Xintela’s markers. XACT™ is used in the quality assurance of methods and cells in the company’s own development activities for stem cell products but also in strategic collaborations with other companies and research groups. These collaborations aim to provide early revenues for Xintela, while increasing interest in the company’s technology.

Click here to read more about Xintela's projects
top

Patent portfolio

Xintela’s technology platform is protected by a large number of granted patents in important markets, and the company continuously files new applications covering commercially relevant aspects generated in the R&D pipeline.

Patent family
Title
Territories
Valid until
  status
WO 00/75187
"Alpha-11-patents"
"An integrin heterodimer and an alpha subunit thereof"
Territorium:
France, Germany, UK, USA
Giltig till: 
2020
Status: 
Granted
WO 03/106492
"Stem cell marker patents"
"Marker for stem cells and its use"
Territorium:
Australia, Canada, Japan, USA, Austria, Belgium, Switzerland, GermaAustralia, Austria, Belgium, Canada, Denmark, France, Germany, Holland, Ireland, Italy, Japan, Spain, Sweden, Switzerland, UK, USA.ny, Denmark, Spain, France, UK, Ireland, Italy, Holland, Sweden.
Giltig till: 
2023
Status: 
Granted
WO 2004/089990
"Antibody patents"
"New monoclonal antibody capable of binding integrin α10β1
Territorium:
Australia, Canada, France, Germany, Holland, Ireland, Japan, Sweden, Switzerland, UK, USA.
Giltig till: 
2024
Status: 
Granted
WO 2016/133449
"Brain tumour patents"
"Detection and treatment of malignant tumours in the CNS"
Territorium:
Australia, Canada, China, Europe (EP), Israel, Japan, South Africa, South Korea, USA.
Giltig till: 
2036
Status: 
Pending in national phase
WO 2018/033596
"Neural stem cells"
"Neural Stem Cell Marker"
Territorium:
Australia, Brazil, Canada, China, Europe (EP), Israel, India, Japan, Mexico, Singapore, South Africa, South Korea, USA.
Giltig till: 
2037
Status: 
Pending in national phase
WO 2018/138322
"Prevention of osteoarthritis"
"Prevention and treatment of bone and cartilage damage or disease"
Territorium:
PCT
Giltig till: 
2038
Status: 
Pending in PCT phase
WO 2019/002547
"XACT for chondrocytes"
"Quality assurance of chondrocytes"
Territorium:
PCT
Giltig till: 
20368
Status: 
Pending in PCT phase
top

Publications

Camper, L., Hellman, U. and Lundgren-Åkerlund, E. Isolation, "Cloning, and Sequence Analysis of the Integrin Subunit α10, a β1-associated Collagen Binding Integrin Expressed on Chondrocytes." Journal of Biological Chemistry 273, 20383–20389 (1998).

Camper, L., Holmvall, K., Wängnerud, C., Aszódi, A. and Lundgren-Åkerlund, E.  "Distribution of the collagen-binding integrin α10β1 during mouse development."  Cell Tissue Res. 306, 107-116 (2001).

Bengtsson, T., Camper, L., Schneller, M. and Lundgren-Åkerlund, E.  "Characterization of the mouse integrin subunit α10 gene and comparison with its human homologue. Genomic structure, chromosomal localization and identification of splice variants." Matrix Biology 20, 565–76 (2001).

Bengtsson, T., Aszódi. A., Nicolae, C., Hunziker, E.B., Lundgren-Åkerlund, E. and Fässler, R.  "Loss of α10β1 integrin expression leads to moderate dysfunction of growth plate chondrocytes. " Journal of Cell Science 118, 929–36 (2005).

Varas, L., Bryngelson Ohlsson, L., Honeth, G., Olsson, A., Bengtsson, T., Wiberg, C., Bockermann, R., Järnum, S., Richter, J., Pennigton, D., Johnstone, B. Lundgren-Åkerlund, E and Kjellman, C.  "α10 Integrin expression is up-regulated on fibroblast growth factor-2-treated mesenchymal stem cells with improved chondrogenic differentiation potential. " Stem Cells and Development 16, 965–978 (2007).

Lundgren-Åkerlund E, Aszòdi A. "Integrin α10β1: a collagen receptor critical in skeletal development" Adv Exp Med Biol. 819:61-71. (2014)

Zeltz C, Lu N, Gullberg D. “Integrin α11β1: a major collagen receptor on fibroblastic cells" Adv Exp Med Biol. 819:73-83. (2014)

top